Problem Find the value of S. (★): S \equiv \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!} Solution \begin{align} S &= \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^{k!} (-1)^n \cancelto{1}{(-1)^2}}{k!(2n+1)!}\\ &= \lim_{k\rightarrow 0} \frac{(-1)^{k!}}{k!} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^n}{(2n+1)!} \end{align} We make the following observations. n! is always even all natural numbers n \geq 2 because n! = n\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot 2 \cdot 1. Therefore, (-1)^{n!} = 1 for any natural number n\geq2. The limit in (★) only makes sense if we define k! and -1 as follows. \begin{aligned} k! &\equiv \Gamma(k+1)\\ -1 &\equiv e^{j\pi} \end{aligned} Here, \Gamma(k+1) is the gamma function and j is the imaginary unit. We then get $$ \lim_...
Personal account of random thoughts of the author #philosophy #math #science #physics #engineering