Problem
Find the value of S. 1 (★): S \equiv \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!}
Solution
\begin{align} S &= \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^{k!} (-1)^n \cancelto{1}{(-1)^2}}{k!(2n+1)!}\\ &= \lim_{k\rightarrow 0} \frac{(-1)^{k!}}{k!} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^n}{(2n+1)!} \end{align}
We make the following observations.
- n! is always even all natural numbers n \geq 2 because
n! = n\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot 2 \cdot 1.
Therefore, (-1)^{n!} = 1 for any natural number n\geq2.
-
The limit in (★) only makes sense if we define k! and -1 as follows.
\begin{aligned}
k! &\equiv \Gamma(k+1)\\
-1 &\equiv e^{j\pi}
\end{aligned}Here, \Gamma(k+1) is the gamma function and j is the imaginary unit. We then get \lim_{k\rightarrow 0} \frac{(-1)^{k!}}{k!} = \lim_{k\rightarrow 0} e^{j\pi (k!)} = -1because \lim_{k\rightarrow 0} {k!} = \lim_{k\rightarrow 0} {\Gamma(k+1)} = \Gamma(1) = 1.
We observe that
\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} 1^n = \sin{1}
because for any real number x, the Taylor expansion of \sin{x} is,
\sin{x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^n.
Therefore, S = \frac{2}{3} - \sin{1}.■
Comments
Post a Comment