Skip to main content

Simplify $\lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!}$

Problem

Find the value of $S$. $$ (★): S \equiv \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!} $$

Solution

$$\begin{align} S &= \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^{k!} (-1)^n \cancelto{1}{(-1)^2}}{k!(2n+1)!}\\ &= \lim_{k\rightarrow 0} \frac{(-1)^{k!}}{k!} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^n}{(2n+1)!} \end{align}$$ We make the following observations.
  1. $n!$ is always even all natural numbers $n \geq 2$ because $$ n! = n\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot 2 \cdot 1. $$ Therefore, $(-1)^{n!} = 1$ for any natural number $n\geq2$.
  2. The limit in (★) only makes sense if we define $k!$ and $-1$ as follows. $$\begin{aligned} k! &\equiv \Gamma(k+1)\\ -1 &\equiv e^{j\pi} \end{aligned}$$ Here, $\Gamma(k+1)$ is the gamma function and $j$ is the imaginary unit. We then get $$ \lim_{k\rightarrow 0} \frac{(-1)^{k!}}{k!} = \lim_{k\rightarrow 0} e^{j\pi (k!)} = -1 $$ because $$ \lim_{k\rightarrow 0} {k!} = \lim_{k\rightarrow 0} {\Gamma(k+1)} = \Gamma(1) = 1. $$
We then obtain $$\begin{align} S &= -\left( \frac{(-1)^{1!}(-1)^1}{(2\cdot 1+1)!} + \sum_{n=2}^{\infty} \frac{(-1)^n}{(2n+1)!} \right)\\ &= -\left( \frac{1}{3!} + \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} -\frac{(-1)^0}{(2\cdot 0+1)!} -\frac{(-1)^1}{(2\cdot 1+1)!} \right)\\ &= \frac{2}{3} - \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}. \end{align}$$ We observe that $$ \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} 1^n = \sin{1} $$ because for any real number $x$, the Taylor expansion of $\sin{x}$ is, $$ \sin{x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^n. $$

Therefore, $$ S = \frac{2}{3} - \sin{1}.■ $$

References

Comments

Popular posts from this blog

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(2)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(2) Let $f(x) = 1 + \frac{1}{x-1}(x\neq 1)$. The solution of the equation $f\left(f\left(x\right)\right) = f\left(x\right)$ is $x = \fbox{A }, \fbox{B }$. Solution The right-hand side of the equation is $f(x)$, which is already given in the problem to be $$ f\left(x\right) = 1 + \frac{1}{x-1}. $$ The left-hand side of the equation is $$\begin{align} f\left(f\left(x\right)\right) &= 1 + \frac{1}{f(x) - 1}\\ &= 1 + \frac{1}{\left(1+\frac{1}{x-1}\right) - 1}\\ &= 1 + \frac{1}{\frac{1}{x-1}}\\ &= 1 + {x-1}\\ &= x. \end{align}...

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(4)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(4) The division of a polynomial function $f(x)$ by $(x-1)^2$ gives the remainder of $x+1$, and that by $x^2$ gives the remainder $2x+3$. Thus, the remainder of the division of $f(x)$ by $x^2(x-1)$ is $$ \fbox{ A }x^2 + \fbox{ B }x + \fbox{ C } . $$ Solution We need to find the remainder when $f(x)$ is divided by $x^2(x-1)$. Because $x^2(x-1)$ is of order $n=3$, the remainder will be of at most the order $n=2$, which means that it is of the form $Ax^2 + Bx + C$. The problem is now to find the coefficients $A,B$ and $C$ such that ...

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(1)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(1) The largest one among natural numbers that are less than $$ \log_2{3}\cdot\log_3{4}\cdot\log_4{5}\cdots\cdots\log_{2019}{2020} $$ is $ \fbox { A } $. Solution The key idea is the following relationship that holds for positive numbers $p, q,$ and $b$. $$ \log_p{q} = \frac{\log_b{q}}{\log_b{p}}, $$ where $p\neq1$ and $b\neq1$. For convenience, let $$ L \equiv \log_2{3}\cdot\log_3{4}\cdot\log_4{5}\cdots\cdots\log_{2019}{2020}. $$ Selecting $b=e$, we obtain $$\begin{align} L &=\frac{\cancel{\log{3}}}{\log{2}}\cdot \frac{\cancel{\...