Prove: \arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4}, \arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} = \arcsin{\frac{3}{5}}
We prove identities involving inverse trigonometric functions. Sum formulas from trigonometry are exploited. \arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4} Suppose that \arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} \neq \frac{\pi}{4}. Then, \begin{align} \tan{\left(\arctan{\frac{1}{2}}+\arctan{\frac{1}{3}}\right)} &\neq \tan{\frac{\pi}{4}}\\ \frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot\frac{1}{3}} &\neq 1 \\ \frac{5}{6-5} &\neq 1 \\ 1 &\neq 1, \end{align} which is a contradiction. Thus, \arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4}.□ \arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} = \arcsin{\frac{3}{5}} Suppose that \arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} \neq \arcsin{\frac{3}{5}}. Then, $$\begin{align} \sin{\left(\arcsin{\frac{16}{65}}+\arcsin{\fra...