Skip to main content

Find the values: $\sin{\left(2\arccos{\frac{2}{5}}\right)}=?$, $\arcsin{a}+\arccos{a}=?$, $\arctan{a}+\arctan{\frac{1}{a}}=?$

The following exercises involve the simplification of numerical expressions involving inverse trigonometric functions. We use the co-function relationships and reciprocal relationships among trigonometric functions.

  1. $\sin{\left(2\arccos{\frac{2}{5}}\right)}=?$ $$\begin{align} &=2\sin{\left(\arccos{\frac{2}{5}}\right)}\cos{\left(\arccos{\frac{2}{5}}\right)}% =2\cdot\frac{2}{5}\sin{\left(\arccos{\frac{2}{5}}\right)}\\% &=\frac{4}{5}\sin{\left(\arcsin{\frac{\sqrt{5^2-2^2}}{5}}\right)}\\ &=\frac{4}{5}\cdot\frac{\sqrt{21}}{5}\\ &=\frac{4}{25}\sqrt{21}.□ \end{align}$$
  2. $\arcsin{a}+\arccos{a}=?$

    We observe that because sine and cosine functions are co-functions of each other, for any $a$ in the domain of inverse cosine and inverse sine functions, $$ y \equiv \sin(\theta) = \cos{\left(\frac{\pi}{2} - \theta\right)} \Rightarrow \arccos{y} = \frac{\pi}{2} -\arcsin{y}. $$

    Thus, the given equals $$ \arcsin{a} + \left(\frac{\pi}{2}-\arcsin{a}\right) = \frac{\pi}{2}.□ $$

  3. $\arctan{a}+\arctan{\frac{1}{a}}=?$

    We observe that because tangent and cotangent functions are co-functions of each other, for any $a$ in the domain of inverse tangent sine functions, $$ \DeclareMathOperator{\arccot}{arccot} y \equiv \tan(\theta) = \arccot{\left(\frac{\pi}{2} - \theta\right)} \Rightarrow \arccot{y} = \frac{\pi}{2} -\arctan{y}. $$

    Thus, the given equals $$ \arctan{a} + \left(\frac{\pi}{2}-\arccot{\frac{1}{a}}\right) = \frac{\pi}{2} + \arctan{a} -\arccot{\frac{1}{a}}. $$ Because tangent and cotangent are reciprocals of each other, $$ \arccot{\frac{1}{a}} = \arctan{a}, $$ and so, $$ \frac{\pi}{2} + \arctan{a} -\arccot{\frac{1}{a}} = \frac{\pi}{2} + \arctan{a} -\arctan{a} = \frac{\pi}{2}.□ $$

References

Comments

Popular posts from this blog

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(2)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(2) Let $f(x) = 1 + \frac{1}{x-1}(x\neq 1)$. The solution of the equation $f\left(f\left(x\right)\right) = f\left(x\right)$ is $x = \fbox{A }, \fbox{B }$. Solution The right-hand side of the equation is $f(x)$, which is already given in the problem to be $$ f\left(x\right) = 1 + \frac{1}{x-1}. $$ The left-hand side of the equation is $$\begin{align} f\left(f\left(x\right)\right) &= 1 + \frac{1}{f(x) - 1}\\ &= 1 + \frac{1}{\left(1+\frac{1}{x-1}\right) - 1}\\ &= 1 + \frac{1}{\frac{1}{x-1}}\\ &= 1 + {x-1}\\ &= x. \end{align}...

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(4)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(4) The division of a polynomial function $f(x)$ by $(x-1)^2$ gives the remainder of $x+1$, and that by $x^2$ gives the remainder $2x+3$. Thus, the remainder of the division of $f(x)$ by $x^2(x-1)$ is $$ \fbox{ A }x^2 + \fbox{ B }x + \fbox{ C } . $$ Solution We need to find the remainder when $f(x)$ is divided by $x^2(x-1)$. Because $x^2(x-1)$ is of order $n=3$, the remainder will be of at most the order $n=2$, which means that it is of the form $Ax^2 + Bx + C$. The problem is now to find the coefficients $A,B$ and $C$ such that ...

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(1)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(1) The largest one among natural numbers that are less than $$ \log_2{3}\cdot\log_3{4}\cdot\log_4{5}\cdots\cdots\log_{2019}{2020} $$ is $ \fbox { A } $. Solution The key idea is the following relationship that holds for positive numbers $p, q,$ and $b$. $$ \log_p{q} = \frac{\log_b{q}}{\log_b{p}}, $$ where $p\neq1$ and $b\neq1$. For convenience, let $$ L \equiv \log_2{3}\cdot\log_3{4}\cdot\log_4{5}\cdots\cdots\log_{2019}{2020}. $$ Selecting $b=e$, we obtain $$\begin{align} L &=\frac{\cancel{\log{3}}}{\log{2}}\cdot \frac{\cancel{\...