Skip to main content

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(2)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020. There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire. The official answer key is here.

Problem 1(2)

Let $f(x) = 1 + \frac{1}{x-1}(x\neq 1)$. The solution of the equation $f\left(f\left(x\right)\right) = f\left(x\right)$ is $x = \fbox{A }, \fbox{B }$.

Solution

The right-hand side of the equation is $f(x)$, which is already given in the problem to be $$ f\left(x\right) = 1 + \frac{1}{x-1}. $$

The left-hand side of the equation is $$\begin{align} f\left(f\left(x\right)\right) &= 1 + \frac{1}{f(x) - 1}\\ &= 1 + \frac{1}{\left(1+\frac{1}{x-1}\right) - 1}\\ &= 1 + \frac{1}{\frac{1}{x-1}}\\ &= 1 + {x-1}\\ &= x. \end{align}$$

Equating the left-hand side and right-hand side of the equation, we obtain $$\begin{align} x &= 1 + \frac{1}{x-1}\\ x-1 &= \frac{1}{x-1}\\ (x-1)^2 &= 1\\ x-1 &= \pm 1\\ x &= 1\pm 1 = 2,0. \end{align}$$

We check our solutions. For $x=2$, the right-hand side of the equation becomes $f(2) = 2$ and the left-hand side becomes $f\left(f\left(2\right)\right) = f(2) =2$. Because both sides are equal (both are equal to $2$), $x=2$ is indeed a solution.

For $x=0$, the right-hand side of the equation becomes $f(0) = 0$ and the left-hand side becomes $f\left(f\left(0\right)\right) = f(0) =0$. Because both sides are equal (both are equal to $0$), $x=0$ is indeed a solution. Thus, the two solutions are $x=2$ and $x=0$. ■

Comments

Popular posts from this blog

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(4)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(4) The division of a polynomial function $f(x)$ by $(x-1)^2$ gives the remainder of $x+1$, and that by $x^2$ gives the remainder $2x+3$. Thus, the remainder of the division of $f(x)$ by $x^2(x-1)$ is $$ \fbox{ A }x^2 + \fbox{ B }x + \fbox{ C } . $$ Solution We need to find the remainder when $f(x)$ is divided by $x^2(x-1)$. Because $x^2(x-1)$ is of order $n=3$, the remainder will be of at most the order $n=2$, which means that it is of the form $Ax^2 + Bx + C$. The problem is now to find the coefficients $A,B$ and $C$ such that ...

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(5)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(5) The angle $\theta\left( 0\lt \theta \lt \frac{\pi}{2}\right)$ between the two lines $y=(2-\sqrt{3})x$ and $y=(\sqrt{3}-2)x$ on the $xy$-plane is $\fbox{ A }$. Solution For convenience, let us name the lines $l_1$ and $l_2$. $$\begin{align} l_1: y = (2-\sqrt{3})x\\ l_2: y = (\sqrt{3}-2)x \end{align}$$ Let us also call the angle that $l_1$ makes with the positive $x$-axis $\theta_1$, and the angle that $l_2$ makes with the positive $x$-axis $\theta_2$. The problem seeks to find the angle $\theta$ which is the smaller of $|\theta_1-\theta_2|$ and $\pi-|\t...