Problem
Find the limit of the following sequence. $$\begin{align} $a_1&=1\\ a_{n+1} &= \frac{3a_n+4}{2a_n+3}$ \end{align}$$
Solution
- Monotonicity: We use mathematical induction to show
that for all $n\in\mathbb{N}$, $a_{n+1} - a_n \geq 0$
and therefore, $\{a_n\}$ is monotonic increasing.
For the base case at $n=1$, it is easy to see that $a_{n+1}-a_n = \frac{7}{5} - 1 = \frac{2}{5} >0.$
For the inductive case at $n=k$, we assume that $$\begin{align} a_{k+1} - a_{k} & = \frac{3a_k+4}{2a_k+3} - \frac{3a_{k-1}+4}{2a_{k-1}+3}\\ & = \frac{a_k - a_{k-1}}{(2a_k+3)(2a_{k-1}+3)} \geq 0. \end{align}$$ For $n=k+1$, we get, $$\begin{align} a_{k+2} - a_{k+1} & = \frac{a_{k+1} - a_{k}}{(2a_{k+1}+3)(2a_{k}+3)} \\ &\geq 0\\ &\because a_{k+1} - a_{k} >0.□ \end{align}$$
- Boundedness: Because the sequence is monotonic increasing,
and $a_1=1$, then $a_n \geq 1$.
Therefore, the sequence is bounded below.
To show that the sequence is also bounded above, we observe that $$\begin{align} a_{n} &= \frac{3a_{n-1}+4}{2a_{n-1}+3} \\ &\leq\frac{3a_{n-1}+4}{a_{n-1}} \because{\forall n\in\mathbb{N}, a_n\geq1}\\ &\leq 3 + \frac{4}{a_{n-1}} \leq 7.□ \end{align}$$
- Limit: If the limit $L \equiv \lim_{n\rightarrow\infty} a_n$ exists, then $$\begin{align} \lim_{n\rightarrow\infty}a_{n+1} &= \lim_{n\rightarrow\infty}\frac{3a_n+4}{2a_n+3}\\ L &= \frac{3L+4}{2L+3}\\ 2L^2 + 3L &= 3L +4\\ L &= \pm\sqrt{2} \\ \Rightarrow L &=\sqrt{2} \because L>0.■ \end{align}$$
Comments
Post a Comment