Problem Find the value of $S$. $$ (★): S \equiv \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!} $$ Solution $$\begin{align} S &= \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^{k!} (-1)^n \cancelto{1}{(-1)^2}}{k!(2n+1)!}\\ &= \lim_{k\rightarrow 0} \frac{(-1)^{k!}}{k!} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^n}{(2n+1)!} \end{align}$$ We make the following observations. $n!$ is always even all natural numbers $n \geq 2$ because $$ n! = n\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot 2 \cdot 1. $$ Therefore, $(-1)^{n!} = 1$ for any natural number $n\geq2$. The limit in (★) only makes sense if we define $k!$ and $-1$ as follows. $$\begin{aligned} k! &\equiv \Gamma(k+1)\\ -1 &\equiv e^{j\pi} \end{aligned}$$ Here, $\Gamma(k+1)$ is the gamma function and $j$ is the imaginary unit. We then get $$ \lim_...
Personal account of random thoughts of the author #philosophy #math #science #physics #engineering