Skip to main content

Posts

Prove: $\arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4}$, $\arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} = \arcsin{\frac{3}{5}}$

We prove identities involving inverse trigonometric functions. Sum formulas from trigonometry are exploited. $\arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4}$ Suppose that $$ \arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} \neq \frac{\pi}{4}. $$ Then, $$\begin{align} \tan{\left(\arctan{\frac{1}{2}}+\arctan{\frac{1}{3}}\right)} &\neq \tan{\frac{\pi}{4}}\\ \frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot\frac{1}{3}} &\neq 1 \\ \frac{5}{6-5} &\neq 1 \\ 1 &\neq 1, \end{align}$$ which is a contradiction. Thus, $$ \arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4}.□ $$ $\arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} = \arcsin{\frac{3}{5}}$ Suppose that $$ \arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} \neq \arcsin{\frac{3}{5}}. $$ Then, $$\begin{align} \sin{\left(\arcsin{\frac{16}{65}}+\arcsin{\fra...

Solve: $\arcsin{\frac{3}{5}}=\arctan{x}$, $\arcsin{\frac{3}{5}}=2\arctan{x}$

Equations involving inverse trigonometric functions are solved for the unknown. The following relation is assumed proven: $$ \theta = \arcsin{\frac{a}{c}} = \arccos{\frac{\sqrt{c^2-a^2}}{c}}, $$ which is clear from the figure below. $\arcsin{\frac{3}{5}}=\arctan{x}$ $$\begin{align} \arctan{x} &= \arcsin{\frac{3}{5}} = \arctan{\frac{3}{\sqrt{5^2-3^2}}} = \arctan{\frac{3}{4}}\\ &\Rightarrow x = \frac{3}{4}.□ \end{align}$$ $\arcsin{\frac{3}{5}}=2\arctan{x}$ $$\begin{align} 2\arctan{x} &= \arcsin{\frac{3}{5}} = \arctan{\frac{3}{\sqrt{5^2-3^2}}} = \arctan{\frac{3}{4}}\\ \frac{3}{4} &= \tan{\left(2\arctan{x}\right)} = \frac{2\tan{\left(\arctan{x}\right)}}{1-\tan^2{\left(\arctan{x}\right)}} \\ &= \frac{2x}{1-x^2}\\ &\Rightarrow 0 = 3x^2 +8x -3 = (3x-1)(3x+3) \\ &\Rightarrow x = \frac{1}{3} ( x = -1 \hbox{ is extraneous}).□ \end{align}$$ References

Find the values: $\sin{\left(2\arccos{\frac{2}{5}}\right)}=?$, $\arcsin{a}+\arccos{a}=?$, $\arctan{a}+\arctan{\frac{1}{a}}=?$

The following exercises involve the simplification of numerical expressions involving inverse trigonometric functions. We use the co-function relationships and reciprocal relationships among trigonometric functions. $\sin{\left(2\arccos{\frac{2}{5}}\right)}=?$ $$\begin{align} &=2\sin{\left(\arccos{\frac{2}{5}}\right)}\cos{\left(\arccos{\frac{2}{5}}\right)}% =2\cdot\frac{2}{5}\sin{\left(\arccos{\frac{2}{5}}\right)}\\% &=\frac{4}{5}\sin{\left(\arcsin{\frac{\sqrt{5^2-2^2}}{5}}\right)}\\ &=\frac{4}{5}\cdot\frac{\sqrt{21}}{5}\\ &=\frac{4}{25}\sqrt{21}.□ \end{align}$$ $\arcsin{a}+\arccos{a}=?$ We observe that because sine and cosine functions are co-functions of each other, for any $a$ in the domain of inverse cosine and inverse sine functions, $$ y \equiv \sin(\theta) = \cos{\left(\frac{\pi}{2} - \theta\right)} \Rightarrow \arccos{y} = \frac{\pi}{2} -\arcsin{y}. $$ Thus, the gi...

Find the limit of the sequences: $a_n = \left(1-\frac{1}{n}\right)^n $, $a_n = \sqrt{n+1}-\sqrt{n}$

In the following problems, we find the limits of sequences $\{a_n\}$ given the functional form of the sequences. We assume that some fundamental limits such as $$ \lim_{n\rightarrow\infty}\frac{1}{n} = 0 $$ and $$ \lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^n \equiv e $$ are known. $a_n = \left(1-\frac{1}{n}\right)^n $ $$\begin{align} a_n &= \left(\frac{n-1}{n}\right)^n% = \left(\frac{n}{n-1}\right)^{-n}\\ &=\left(\frac{n-1}{n-1}+\frac{1}{n-1}\right)^{-n}\\ &=\left(1+\frac{1}{n-1}\right)^{-n}\\ &=\left(1+\frac{1}{n-1}\right)^{-(n-1)}\left(1+\frac{1}{n-1}\right)^{-1}\\ &=\frac{\left(1+\frac{1}{n-1}\right)^{-1}}{\left(1+\frac{1}{n-1}\right)^{(n-1)}}\\ % \lim_{n\rightarrow\infty}a_n% &=\lim_{n\rightarrow\infty}\frac{\left(1+\frac{1}{n-1}\right)^{-1}}{\left(1+\frac{1}{n-1}\right)^{(n-1)}}\\ &=\frac{\lim_{n\rightarrow\infty}\left(1+\frac{1}{n-1}\right)^{-1}}{\lim_{{n-1}\rightarrow\infty}\left(1+\fra...

Simplify $\lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!}$

Problem Find the value of $S$. $$ (★): S \equiv \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!} $$ Solution $$\begin{align} S &= \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^{k!} (-1)^n \cancelto{1}{(-1)^2}}{k!(2n+1)!}\\ &= \lim_{k\rightarrow 0} \frac{(-1)^{k!}}{k!} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^n}{(2n+1)!} \end{align}$$ We make the following observations. $n!$ is always even all natural numbers $n \geq 2$ because $$ n! = n\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot 2 \cdot 1. $$ Therefore, $(-1)^{n!} = 1$ for any natural number $n\geq2$. The limit in (★) only makes sense if we define $k!$ and $-1$ as follows. $$\begin{aligned} k! &\equiv \Gamma(k+1)\\ -1 &\equiv e^{j\pi} \end{aligned}$$ Here, $\Gamma(k+1)$ is the gamma function and $j$ is the imaginary unit. We then get $$ \lim_...

Compute $\sin(\sin(...\sin(x)))$

Problem Find the limit $\sin(\sin(...\sin(x)))$ for any real number $x$. Solution The problem can be precisely formulated as follows: Find the limit $L$ such that $$ L \equiv\lim_{n\rightarrow\infty}{f_n(x)}, $$ where $x\in\mathbb{R}$, $n\in\mathbb{N}$, and $$\begin{align} f_1(x) &= \sin(x)\\ f_n(x) &= \sin(f_{n-1}(x)). \end{align}$$ We observe that, if the limit $L$ exists, $$\begin{align} \lim_{n\rightarrow\infty} f_{n-1}(x) &= L\\ \lim_{n\rightarrow\infty} f_n(x) &= L, \end{align}$$ and thus, $$ L = \sin{L}, $$ which we show to be $L=0$ in the following. First, we show that the limit exists. We accept the Axiom of Continuity of the Real Line, which says that any bounded monotonic sequence converges. Thus, to show that $L$ exists, we need only show that (1) $f_n(x)$ is a bounded sequence of $n$, and that (2) $f_n(x)$ is a monotonic sequence of $n$. $f_n(x)$ is clearly bounded because $f_n(...

Reasonable Majority Rule: Wise Decision-making in a Democracy

Let the people decide what is good for them. On the one hand, this principle is at the core of democracy and manifests in the phrase "majority rule." On the other hand, the protection of the voice of the minority is another principle a functioning democracy must enforce. Democracy requires both. The fundamental assumption is that, after free and informed debate, the majority will be reasonable enough to judge ideas based on their merits (and not on their emotional relationship with the proponents). Because in a democracy, the Government's wisdom is an extension of the people's wisdom, wise decision-making is the duty of every citizen. The "goodness" of a decision or an idea does not necessarily depend on the number of its proponents but on the independent practical assessment of available information. The difficulty in balancing the interests of opposing sides is highlighted on occasions when the minority is unwilling to accept the decision of the ...