Skip to main content

Posts

2020 MEXT Japanese Government Scholarship Undergraduate Students Natural Sciences Qualifying Examination Mathematics (B): Problem 1(1)

This problem appears at the Qualifying Examinations for Applicants for Japanese Government (MEXT) Scholarships 2020 . There are two mathematics exams: one for biology-related natural sciences (Mathematics A), and another for physics- and engineering-related natural sciences (Mathematics B). This problem is from the 2020 Mathematics (B) questionnaire . The official answer key is here . Problem 1(1) The largest one among natural numbers that are less than $$ \log_2{3}\cdot\log_3{4}\cdot\log_4{5}\cdots\cdots\log_{2019}{2020} $$ is $ \fbox { A } $. Solution The key idea is the following relationship that holds for positive numbers $p, q,$ and $b$. $$ \log_p{q} = \frac{\log_b{q}}{\log_b{p}}, $$ where $p\neq1$ and $b\neq1$. For convenience, let $$ L \equiv \log_2{3}\cdot\log_3{4}\cdot\log_4{5}\cdots\cdots\log_{2019}{2020}. $$ Selecting $b=e$, we obtain $$\begin{align} L &=\frac{\cancel{\log{3}}}{\log{2}}\cdot \frac{\cancel{\...

Prove: $\arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4}$, $\arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} = \arcsin{\frac{3}{5}}$

We prove identities involving inverse trigonometric functions. Sum formulas from trigonometry are exploited. $\arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4}$ Suppose that $$ \arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} \neq \frac{\pi}{4}. $$ Then, $$\begin{align} \tan{\left(\arctan{\frac{1}{2}}+\arctan{\frac{1}{3}}\right)} &\neq \tan{\frac{\pi}{4}}\\ \frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot\frac{1}{3}} &\neq 1 \\ \frac{5}{6-5} &\neq 1 \\ 1 &\neq 1, \end{align}$$ which is a contradiction. Thus, $$ \arctan{\frac{1}{2}}+\arctan{\frac{1}{3}} = \frac{\pi}{4}.□ $$ $\arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} = \arcsin{\frac{3}{5}}$ Suppose that $$ \arcsin{\frac{16}{65}}+\arcsin{\frac{5}{13}} \neq \arcsin{\frac{3}{5}}. $$ Then, $$\begin{align} \sin{\left(\arcsin{\frac{16}{65}}+\arcsin{\fra...

Solve: $\arcsin{\frac{3}{5}}=\arctan{x}$, $\arcsin{\frac{3}{5}}=2\arctan{x}$

Equations involving inverse trigonometric functions are solved for the unknown. The following relation is assumed proven: $$ \theta = \arcsin{\frac{a}{c}} = \arccos{\frac{\sqrt{c^2-a^2}}{c}}, $$ which is clear from the figure below. $\arcsin{\frac{3}{5}}=\arctan{x}$ $$\begin{align} \arctan{x} &= \arcsin{\frac{3}{5}} = \arctan{\frac{3}{\sqrt{5^2-3^2}}} = \arctan{\frac{3}{4}}\\ &\Rightarrow x = \frac{3}{4}.□ \end{align}$$ $\arcsin{\frac{3}{5}}=2\arctan{x}$ $$\begin{align} 2\arctan{x} &= \arcsin{\frac{3}{5}} = \arctan{\frac{3}{\sqrt{5^2-3^2}}} = \arctan{\frac{3}{4}}\\ \frac{3}{4} &= \tan{\left(2\arctan{x}\right)} = \frac{2\tan{\left(\arctan{x}\right)}}{1-\tan^2{\left(\arctan{x}\right)}} \\ &= \frac{2x}{1-x^2}\\ &\Rightarrow 0 = 3x^2 +8x -3 = (3x-1)(3x+3) \\ &\Rightarrow x = \frac{1}{3} ( x = -1 \hbox{ is extraneous}).□ \end{align}$$ References

Find the values: $\sin{\left(2\arccos{\frac{2}{5}}\right)}=?$, $\arcsin{a}+\arccos{a}=?$, $\arctan{a}+\arctan{\frac{1}{a}}=?$

The following exercises involve the simplification of numerical expressions involving inverse trigonometric functions. We use the co-function relationships and reciprocal relationships among trigonometric functions. $\sin{\left(2\arccos{\frac{2}{5}}\right)}=?$ $$\begin{align} &=2\sin{\left(\arccos{\frac{2}{5}}\right)}\cos{\left(\arccos{\frac{2}{5}}\right)}% =2\cdot\frac{2}{5}\sin{\left(\arccos{\frac{2}{5}}\right)}\\% &=\frac{4}{5}\sin{\left(\arcsin{\frac{\sqrt{5^2-2^2}}{5}}\right)}\\ &=\frac{4}{5}\cdot\frac{\sqrt{21}}{5}\\ &=\frac{4}{25}\sqrt{21}.□ \end{align}$$ $\arcsin{a}+\arccos{a}=?$ We observe that because sine and cosine functions are co-functions of each other, for any $a$ in the domain of inverse cosine and inverse sine functions, $$ y \equiv \sin(\theta) = \cos{\left(\frac{\pi}{2} - \theta\right)} \Rightarrow \arccos{y} = \frac{\pi}{2} -\arcsin{y}. $$ Thus, the gi...

Find the limit of the sequences: $a_n = \left(1-\frac{1}{n}\right)^n $, $a_n = \sqrt{n+1}-\sqrt{n}$

In the following problems, we find the limits of sequences $\{a_n\}$ given the functional form of the sequences. We assume that some fundamental limits such as $$ \lim_{n\rightarrow\infty}\frac{1}{n} = 0 $$ and $$ \lim_{n\rightarrow\infty}\left(1+\frac{1}{n}\right)^n \equiv e $$ are known. $a_n = \left(1-\frac{1}{n}\right)^n $ $$\begin{align} a_n &= \left(\frac{n-1}{n}\right)^n% = \left(\frac{n}{n-1}\right)^{-n}\\ &=\left(\frac{n-1}{n-1}+\frac{1}{n-1}\right)^{-n}\\ &=\left(1+\frac{1}{n-1}\right)^{-n}\\ &=\left(1+\frac{1}{n-1}\right)^{-(n-1)}\left(1+\frac{1}{n-1}\right)^{-1}\\ &=\frac{\left(1+\frac{1}{n-1}\right)^{-1}}{\left(1+\frac{1}{n-1}\right)^{(n-1)}}\\ % \lim_{n\rightarrow\infty}a_n% &=\lim_{n\rightarrow\infty}\frac{\left(1+\frac{1}{n-1}\right)^{-1}}{\left(1+\frac{1}{n-1}\right)^{(n-1)}}\\ &=\frac{\lim_{n\rightarrow\infty}\left(1+\frac{1}{n-1}\right)^{-1}}{\lim_{{n-1}\rightarrow\infty}\left(1+\fra...

Simplify $\lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!}$

Problem Find the value of $S$. $$ (★): S \equiv \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!+k!+n+2}}{k!(2n+1)!} $$ Solution $$\begin{align} S &= \lim_{k\rightarrow 0} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^{k!} (-1)^n \cancelto{1}{(-1)^2}}{k!(2n+1)!}\\ &= \lim_{k\rightarrow 0} \frac{(-1)^{k!}}{k!} \sum_{n=1}^{\infty} \frac{(-1)^{n!} (-1)^n}{(2n+1)!} \end{align}$$ We make the following observations. $n!$ is always even all natural numbers $n \geq 2$ because $$ n! = n\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot 2 \cdot 1. $$ Therefore, $(-1)^{n!} = 1$ for any natural number $n\geq2$. The limit in (★) only makes sense if we define $k!$ and $-1$ as follows. $$\begin{aligned} k! &\equiv \Gamma(k+1)\\ -1 &\equiv e^{j\pi} \end{aligned}$$ Here, $\Gamma(k+1)$ is the gamma function and $j$ is the imaginary unit. We then get $$ \lim_...

Compute $\sin(\sin(...\sin(x)))$

Problem Find the limit $\sin(\sin(...\sin(x)))$ for any real number $x$. Solution The problem can be precisely formulated as follows: Find the limit $L$ such that $$ L \equiv\lim_{n\rightarrow\infty}{f_n(x)}, $$ where $x\in\mathbb{R}$, $n\in\mathbb{N}$, and $$\begin{align} f_1(x) &= \sin(x)\\ f_n(x) &= \sin(f_{n-1}(x)). \end{align}$$ We observe that, if the limit $L$ exists, $$\begin{align} \lim_{n\rightarrow\infty} f_{n-1}(x) &= L\\ \lim_{n\rightarrow\infty} f_n(x) &= L, \end{align}$$ and thus, $$ L = \sin{L}, $$ which we show to be $L=0$ in the following. First, we show that the limit exists. We accept the Axiom of Continuity of the Real Line, which says that any bounded monotonic sequence converges. Thus, to show that $L$ exists, we need only show that (1) $f_n(x)$ is a bounded sequence of $n$, and that (2) $f_n(x)$ is a monotonic sequence of $n$. $f_n(x)$ is clearly bounded because $f_n(...